
Fast Volumetric Deformation On General Purpose Hardware

C. Rezk-Salama M. Scheuering G. Soza G. Greiner

Computer Graphics Group, University of Erlangen-Nuremberg, Germany ∗

Abstract

High performance deformation of volumetric objects is a
common problem in computer graphics that has not yet
been handled sufficiently. As a supplement to 3D tex-
ture based volume rendering, a novel approach is presented,
which adaptively subdivides the volume into piecewise linear
patches. An appropriate mathematical model based on tri-
linear interpolation and its approximations is proposed. New
optimizations are introduced in this paper which are espe-
cially tailored to an efficient implementation using general
purpose rasterization hardware, including new technologies,
such as vertex programs and pixel shaders. Additionally, a
high performance model for local illumination calculation is
introduced, which meets the aesthetic requirements of vi-
sual arts and entertainment. The results demonstrate the
significant performance benefit and allow for time-critical
applications, such as computer assisted surgery.

Keywords: volume rendering, deformation, illumination,
3D texture, vertex program, pixel shaders.

1 Introduction

Volume rendering has become an integral part in a variety
of scientific disciplines, such as medicine, natural and com-
putational science as well as visual arts and entertainment.
In recent years, efficient techniques have been developed,
which produce high quality images at interactive frame rates.
These solutions range from pure software approaches [12] to
the development of special purpose hardware [16, 15], and
to methods which exploit the steadily evolving features of
general purpose hardware [3, 2, 21, 14, 18].

In consequence of this development, in the last couple of
years increasing interest in using solid volumetric objects for
free-form modelling has arisen. A prominent example is to-
mographic data which is acquired for surgery planning in
medicine. Due to anatomical shifts and tissue resection, the
data does not match the actual situation during the inter-
vention. Thus, volume data has to be deformed non-linearly
to compensate these misalignments. Further applications
are the animation of volumetric objects in visual arts and

∗Lehrstuhl für Graphische Datenverarbeitung,
Am Weichselgarten 9, 91058 Erlangen, Germany,
Email: {rezk, scheuering, soza, greiner}@cs.fau.de

computer games, or the rendering of scalar fields sampled
on curvilinear grids.

However, the problem of deforming volumetric objects has
not yet been handled sufficiently. Conventional free-form
modelling techniques [1] have led to powerful commercial
tools, but they are mainly restricted to polygonal surface de-
scriptions which do not take into account the interior defor-
mation of the object. In recent years, only a few approaches
have been developed to bridge the gap between these free-
form surface deformation tools and volumetric data sets, as
will be outlined in Section 2.

Since most of these approaches are still far from being in-
teractive, we present an approach based on piecewise linear
patches, which is specially tailored to the features of cur-
rent OpenGL graphics boards. In Section 3, we describe the
mathematical basis of our deformation model. A prototype
implementation using 3D-texture hardware is described in
Section 4. The main benefit of our method is speed, en-
abling its application in non-linear registration tools for to-
mographic data. In Section 5, we extend our model to addi-
tionally approximate the deformation of gradient and normal
vectors at low computational cost. This allows the inclusion
of illumination effects, which also meet the aesthetic require-
ments for an application in visual arts and computer games.
In Section 6, we will have a closer look at possible applica-
tion scenarios. The results obtained with our algorithm are
discussed in Section 7. Finally, in Section 8 we conclude and
give an outlook on future work.

2 Related Work

For direct volume rendering, the scalar value at a sample
point of a given data field is virtually mapped to physical
quantities, that describe the emission and absorbtion of light
at that point. In the usual case this is achieved by a trans-
fer function that maps data values to color (emission) and
opacity (absorbtion). These quantities are then used to syn-
thesize virtual images. We focus our interest on scalar data
fields sampled on a uniform rectilinear grid, like e.g. tomo-
graphic data.

The popular ray-casting approach [7] approximates the
physical equation of light transfer by resampling the data
field and integrating the interpolated discreet emission and
absorbtion values along the rays of sight. The most signifi-
cant contribution to the computational cost of volume ren-
dering is caused by the huge number of spatial interpolation
operations. As a consequence, several efficient algorithms
developed in recent years exploit general purpose texturing
hardware for fast interpolation.

2.1 Texture based volume rendering

Since current OpenGL hardware only supports polygonal
rendering primitives, a volumetric object has to be decom-
posed into a stack of adjacent polygon slices. According to
the orientation of these slices, the majority of texture-based

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
HWWS ’01 Los Angeles, CA USA
© ACM 2001 1-58113-407-X…$5.00

17

Figure 1: Texture based volume rendering applications de-
compose the volume (grey) into either viewport-aligned (left)
or object-aligned slices (right).

approaches can be categorized into methods that either use
object-aligned or viewport-aligned slices.

Algorithms which exploit 3D-textures [3, 21], as they are
provided by OpenGL 1.2 compliant graphics boards, usually
compute cross-sections between the bounding box of the vol-
ume and a stack of planes, parallel to the image plane (see
Figure 1, left). These viewport-aligned polygons must be
recomputed whenever the viewing direction changes. Since
trilinear texture interpolation is supported in hardware, this
can be done at an interactive frame rate.

As an alternative, object-aligned slices can be used, which
is especially important if the graphics hardware only sup-
ports 2D-textures [18]. The slices are then set parallel to
the coordinate axes of the rectilinear data grid. This al-
lows the substitution of the required trilinear interpolation
by bilinear interpolation. However, if the viewing direction
changes by more that 90 degrees, the algorithm switches to
an orthogonal stack of slices.

In the final compositing step the textured polygon slices
are blended back-to-front onto the image plane, which re-
sults in a semi-transparent view of the volume. For 3D-
textures, both object- and viewport-aligned slices result in
images of equivalent quality. In fact, in case of parallel pro-
jection both approaches only differ in the position of the
sampling points along the viewing ray, which is irrelevant
according to sampling theory. However, object-aligned slices
might produce visual artifacts when switching between or-
thogonal slice stacks.

2.2 Deformation Models

Apart of the large variety of deformable surface mod-
els [19, 5, 13, 4], only few approaches on volume deformation
have yet been developed. We again focus our interest on in-
teractive algorithms.

In 1995 Kurzion and Yagel [10] provided the basis for in-
teresting space deformation algorithms by introducing ray
deflectors. This concept allows the bending of viewing rays
for ray casting applications. They also supplemented this ap-
proach and extended it to 3D texture based volume render-
ing [11]. The deformation of the interior is here computed by
tessellating the slice polygons into smaller triangles. A simi-
lar idea was followed by Westermann and Rezk-Salama [22],
which allowed the modelling of deformation in an intuitive
way by deforming arbitrary surfaces within the volume data
set. Fang et al. [9] computed volumetric deformation by sub-
dividing the volume into an octree and by slicing and texture
mapping each sub-cube. Due to the required real-time tes-

sellation of the slice images, these approaches only achieve
moderate frame rates.

Different approaches to handle volumetric deformation
(such as [8]) tessellate the whole volume into a set of tetra-
hedra. The space deformation of a single tetrahedron is then
described as an affine transformation

Φ(~x) = A~x +~b. (1)

The matrix A ∈ IR3×3 and the vector ~b ∈ IR3 are fully deter-
mined by specifying four translation vectors at the tetrahe-
dra’s vertices. Although this approach is well-defined from
the mathematical point of view, its implementation leads to
multiple problems, which again degrade its overall perfor-
mance. First of all, depth-sorting and slicing multiple tetra-
hedra into polygons contribute a significant computational
cost for the CPU. A volume cube must be tessellated into at
least five tetrahedra, if only the eight corner vertices are to
be transformed. When inserting additional free vertices in
the interior of the volume, the number of tetrahedra rapidly
increases. Additionally, if gradient and normal vectors also
have to be deformed, the inverse of the affine transforma-
tion (Equation 1) has to be computed separately for each
tetrahedron.

Algorithms that use any type of real-time tessellation do
not allow the reuse of vertices which were computed by the
slicing algorithm to display the next frame, regardless of
whether the deformation is static or not. This prohibits
the efficient use of hardware vertex buffers and results in
an increased bus load. In this paper we present a fast al-
gorithm to render deformed volumes, which exploits the
features of current graphics boards, such as vertex buffers
and programmable rasterization. In the following section we
describe the mathematical basis of our deformation model,
based on a static set of geometrical rendering primitives gen-
erated by using piecewise linear patches.

3 Piecewise Linear Patches

In our deformation model the volume object is first subdi-
vided into a set of sub-cubes (patches) as depicted in Figure 2
(left). The deformation is specified by translating the tex-
ture coordinates for each vertex of this model. The resulting
translation of a point ~x in the interior of a patch is deter-
mined by trilinear interpolation of the translation vectors
~tijk given at the vertices. The result is a trilinear mapping

Φ(~x) = ~x +
∑

i,j,k∈{0,1}
aijk(~x) · ~tijk, (2)

with the interpolation weights aijk obtained from the origi-
nal undeformed grid. Note that in our model the geometry
is static and only the texture coordinates are transformed.
This is an important benefit, since only the texture coordi-
nates have to be recomputed for each frame. The combina-
tion of this model with an object-aligned slicing algorithm
(see Section 2.1) is the basis of our efficient implementation,
as will be shown in Section 4.

In intuitive modelling applications however, the non-
expert user does not want to specify texture coordinates.
Instead, the user should be able to pick a vertex and drag
it to an arbitrary position. To allow such a manipulation in
our case, the inverse transformation Φ−1 is required. The
problem here is that the inverse of a trilinear mapping in
general is not again a trilinear mapping, but a function of

18

Figure 2: The volume is subdivided into a set of sub-cubes
(left). The deformation is modelled by transformation of
texture coordinates at the vertices.

Figure 3: Constrained vertices are located on edges or faces
between patches of different subdivision levels. Ignoring the
constraints will lead to gaps in texture space (B, right).

higher complexity. However, specifying an inverse mapping
by simply negating the original translation vectors

Φ̃−1(~x) = ~x +
∑

i,j,k∈{0,1}
aijk(~x) · (−~tijk), (3)

results in a good approximation to the original inverse Φ−1.
As can be easily verified, the approximation error for a max-
imum deformation magnitude γ, amounts to

Φ̃−1(Φ(~x)) = ~x + o(γ2), (4)

which turns out to be good enough to enable intuitive mod-
elling.

3.1 Adaptive Subdivision

Using this concept as a basis, it is easy to further subdivide
single patches to form an hierarchical octree as shown in
Figure 3 (A). For all vertices which are located on edges and
faces, which are shared by patches of different subdivision
levels, constraints have to be specified, in order to maintain
a consistent texture map. Without these constraints unde-
sired gaps would emerge in texture space, as depicted for
the 2D case in Figure 3 (B). In the 3D case, we must further
differentiate between face and edge constraints.

Edge Constraints: Edges, which are shared by different
subdivision levels must stay collinear. The inner vertex,
generated by the higher subdivision level must stay at a
fixed position relative to the two neighbouring vertices
(see Figure 4, left).

~VC = (1− α) ~V0 + α · ~V1 (5)

Figure 4: Edge (left) and face constraints (right) are neces-
sary to prevent gaps in texture space.

Face Constraints: Faces, which are shared by different
subdivision levels must stay coplanar. The vertex in
the middle of such a face, must stay at a fixed position
relative to the four vertices, which formed the original
face (see Figure 4, right).

~VC =
∑

i=0...3

ai
~Vi with

∑
i=0...3

ai = 1; (6)

To circumvent recursive constraints, we additionally fol-
low a general rule, known from surface subdivision, that says
that two neighbouring patches must not differ by more than
one subdivision level. This means that any patch can only be
further subdivided if all neighbouring patches have at least
the same subdivision level.

4 Implementation

As described in Section 2.1, OpenGL hardware rendering
requires the slicing of the patches into planar polygons. For
an efficient implementation, we want to preserve the benefit
of our deformable model being based on a static geometry.
Therefore we use an object-aligned slicing algorithm (see
Figure 5), which keeps us from having to recompute all the
cross-sections for each frame.

Figure 5: Object-aligned slices are extracted at low compu-
tational cost.

However, the straight-forward approach to slice each sub-
cube and assign texture coordinates at the resulting polygon

19

vertices will not lead to a correct trilinear interpolation of
the deformation according to Equation 2. Figure 6 illustrates
this problem. In column A the desired trilinear interpolation
is displayed. Letting OpenGL perform an internal tessella-
tion of the polygon will lead to a bad approximation of the
trilinear deformation, since the grey triangle is not at all af-
fected by the deformation. As a solution to this problem,
inserting an additional vertex in the middle of the polygon
results in a sufficiently close approximation to the original
trilinear deformation. This also provides a correct triangu-
lation of the non-planar texture map, which results from the
deformation in 3D texture space.

Figure 6: In contrast to the required trilinear interpolation
(A), internal tessellation of OpenGL (B) results in linear
barycentric interpolation. Inserting an additional vertex (C)
approximates trilinear interpolation sufficiently.

According to the available features provided by the ras-
terization hardware, we suggest the following enhancements,
which are supposed to dramatically increase the overall per-
formance.

4.1 Exploiting Vertex Programs

Increasing the level of subdivision in the proposed model
may soon lead to a huge number of small triangles. Although
due to the static geometry only the texture coordinates have
to be recomputed by the CPU, the large number of vertices
will lead to an increased memory bus load, that will again
degrade performance. To avoid this problem, our concept
allows the moving of the complete slicing algorithm to the
geometry processing unit of the graphics board using a novel
hardware feature called vertex programs [6].

Vertex programs (also referred to as vertex shader) are
small user-defined assembler programs which are executed
within the GPU of the graphics board. These programs al-
low the modification and recomputation of position, as well
as normal and texture information for each vertex of the
assigned rendering primitive. Vertex programs are only re-
stricted by a few limitations:

• Vertex programs cannot generate or delete vertices.
Only existing vertices can be modified.

• Vertex programs regard each vertex separately. They
do not know anything about the topology of the ren-
dering primitive, so they have no information about
neighbouring vertices.

However, as demonstrated in [6], vertex programs can be effi-
ciently used for linear keyframe interpolation. If at least two
keyframes of an animated mesh are given, vertex programs
allow the interpolation of arbitrary intermediate meshes.

In our deformation model, vertex programs can be effi-
ciently used to compute the polygon slices of the piecewise
linear patches. For each patch only the five vertices and
texture coordinates (including the inserted vertex as in Fig-
ure 6) of the front and the back face, must be transferred
to the graphics board, according to the current slicing direc-
tion. The front and the back faces of each sub-cube are then
assigned as keyframes for the interpolation and the resulting
slice images are computed by the vertex programm. This re-
duces the necessary bus load to only the corner vertices of
the patches. In combination with hardware vertex buffers,
this should significantly enhance the overall performance.

4.2 Exploiting Pixel-Shader

Pixel shaders (also referred to as texture shader) are new fea-
tures, currently introduced with forthcoming graphics hard-
ware. This concept enables flexible texture lookups as well
as programmable frame-buffer arithmetics. An interesting
feature in the context of pixel shaders is dependent texture
lookup, originally used to combine an environment map with
a bump texture (EMBM).

The basic idea of dependent textures is to use the color
values of an RGBA texel from one texture as texture co-
ordinate for a second texture. Although current definitions
of pixel shaders only support 2D texture lookup, we believe
that the consequential development of this feature will in-
evitably lead to 3D dependent textures.

With a future hardware, which supports dependent tex-
ture lookup for 3D textures, the computation of our volumet-
ric deformation model can be performed completely within
the graphics hardware. The idea here is to store the defor-
mation vectors in the RGB channels of a 3D texture and
to use the dependent texture lookup to obtain the deformed
volumetric information from a second 3D texture map, which
stores the original volume. Note that there is no need for
the first texture to have equal size as the original volume,
so it should be possible to keep it small enough to allow an
interactive update of the deformation field.

Additionally, this technique would allow the rendering of
viewport-aligned slices of the volumetric model, since a uni-
form trilinear mapping of voxels to transformation vectors
is guaranteed by the first 3D texture, that interpolates the
translation vectors.

5 Gradient Deformation

In recent years, several approaches have been developed to
enable local illumination models for 3D texture based vol-
ume rendering [21, 14, 18]. The majority of these approaches
pre-calculate the voxel gradient vectors and store them as a
normal map in an RGB texture. However, due to the non-
linear deformation in our case, pre-calculated gradient vec-
tors would become incorrect. In this section, we discuss a
method to adapt the pre-calculated vectors to the applied
transformation.

For an affine mapping (see Equation 1), normals and gra-
dient vectors have to be transformed with the transposed
inverse of matrix A. However, since our model is based on
a trilinear mapping (Equation 2), whose inverse is a func-
tion of higher complexity, exact calculation of the normal
deformation becomes rather expensive.

20

To keep the calculation simple and maintain the high per-
formance, we suggest an alternative method to compute gra-
dient deformation. The idea is to approximate the original
trilinear mapping Φ(~x) by an affine mapping according to
Equation 1. To simplify the computation, we write this
equation in homogenous coordinates, denoted

Φ(~x) = A~x, with A =

(
A ~b

0 0 0 1

)
∈ IR4×4. (7)

The optimal approximation Φ is determined by minimizing
the quadratic difference between the transformation of the
eight static corner vertices Φ(~xi) and their real transformed
positions ~yi = Φ(~xi), according to

δ

δA

8∑
i=1

‖Φ(~xi)− ~yi‖2 = 0, (8)

which leads to

8∑
i=1

(~xi~x
T
i AT − ~xi~y

T
i) = 0. (9)

Solving this equation for AT , results in

AT = M−1

8∑
i=1

~xi~y
T
i , with M =

8∑
i=1

~xi~x
T
i ∈ IR4×4.

(10)
It is easy to verify that the inverse of matrix M always exists.
Also note that, since the undeformed corner vertices ~xi are
static in this model, matrix M is constant for each patch,
thus allowing an efficient pre-computation. Taking also into
consideration that the corner vertices are located on an axis-
aligned grid, the computation can be further simplified, such
that calculating each entry aij of the affine matrix A will
require only eight multiplications.

The performance benefit of this approximation should be-
come clear, if we consider the diffuse term of the Phong
model [17] for local illumination

Idiff = IL · (~n •~l). (11)

In this context, ~n is the surface normal, which coincides
with the voxel gradient in our model. Assuming direc-

tional light, the light vector ~l is constant for the whole
scene. IL denotes the color of the light source, weighted
by a material dependent diffuse reflection coefficient. The
per-pixel dot product computation can be efficiently per-
formed in hardware using available OpenGL extensions, such
as GL EXT texture env dot3 or GL NV register combiners.

As mentioned above, for the undeformed volume the gra-
dient vectors are pre-calculated and stored within a 3D nor-
mal map. In order to achieve realistic illumination results
for deformable volumetric data as focused here, we have to
adapt the gradient vectors to the actual deformation. Ac-
cording to our approximation, the new diffuse term after the
transformation is determined by

Ĩdiff = IL · (((A−1)T ~n) •~l). (12)

Note that since the gradients ~n are obtained from a texture,
this calculation requires a per-pixel matrix multiplication,
which can be computed using pixel shaders, available on
modern graphics boards. However, to adapt our model to

Figure 7: Diffuse illumination of an undeformed sphere
(left). Extremely deformed sphere with discontinuities at the
patch boundaries (center). Correct illumination by smooth-
ing the deformed light vectors (right) at the vertices.

Figure 8: Animated tail fin of a carp demonstrates realistic
illumination effects during real-time deformation.

a larger number of graphics boards, we propose an efficient
alternative method, which circumvents these per-pixel oper-
ations. Consider that the dot product in Equation 12 can
also be written as

((A−1)T ~n) •~l = ~n • (A−1~l). (13)

In relation to our method, this means that all the pre-
computed normal vectors can be left untouched. We only
have to evaluate a new light vector to obtain an equivalent
visual result.

Regardless of whether the normal deformation is exact
or approximative, using a light vector constant within each
patch, but different for neighbouring patches, will inevitably
result in visible discontinuities as depicted in Figure 7 (cen-
ter). To tackle this problem, there should be smooth tran-
sitions for the diffuse illumination term of neighbouring
patches. This can be easily achieved by assigning light vec-
tors to the vertices instead of the patches. To each vertex
a light vector is assigned, which is averaged from the light
vectors of all the patches, which share this vertex. Analo-
gously to the translation vectors, the light vectors given at
the vertices are trilinearly interpolated within each patch.
To achieve this during rasterization, the light vectors must
be assigned as color values to the vertices of each rendered
polygon (Figure 6), thus allowing the interpolation to be
performed by hardware Gouraud shading. As displayed in
Figure 7, this method will lead to satisfying illumination ef-
fects without any discontinuities. The changing lighting ef-
fects under deformation are also demonstrated in Figure 8.

6 Applications

Apart from the obvious applications of volume animation
in visual arts and entertainment, we believe the most im-
portant application field of our deformable model is medical

21

imaging, especially soft tissue modelling and multi-modality
registration of tomographic data.

For soft tissue modelling, which simulates the biomechani-
cal characteristics of certain tissues, substantial progress has
been made in the recent years [20]. Forthcoming systems are
required to be as exact and realistic as possible. This leads
to complex adaptive subdivision of the volume and com-
putationally expensive mathematical models such as finite
element modelling (FEM) on unstructured grids. Addition-
ally, such systems are mainly treated by pure software solu-
tions, which disallow interactive frame rates. This is because
most systems are constrained to surface based modelling in
contrast to volumetric deformation. For future applications
such as image guided surgery, systems for tissue modelling
can only be applied successfully if the computational time
is significantly reduced. Using a framework as presented in
this paper, applications to handle interesting problems such
as the brain shift phenomenon and liver or heart shifts can be
extremely accelerated by general purpose graphics hardware.
Figures 9 and 10 show examples of soft tissue modelling for
medical applications.

Another field, very closely related to tissue deformation,
is the registration and fusion of different tomographic data
sets (CT, MRI, etc.), as it is necessary for applications in
image guided surgery. Hereby, it is mandatory to match the
pre-operatively acquired data set with the patient data in
the intra-operative situation. Since this is a time-consuming
and critical process, currently available systems have to dra-
matically reduce the computational costs to provide real-
time performance. In general, those registration procedures
optimize certain divergence measures, such as mutual infor-
mation or Bhattacharyya distance. With respect to the fast
evolution of computer graphics boards, it will soon become
possible, to use multi-textures and framebuffer arithmetics
to compute voxel-based similarity metrics in hardware. For
simple metrics like quadratic difference for the monomodal
case or variational distance for multimodal data, this is al-
ready within the realm of possibilities using current hard-
ware concepts.

7 Discussion

The deformable model described in this paper is based on a
clear mathematical background. Approximation errors are
introduced only in a few places:

1. The inverse function Φ̃ (Section 3) is only an approx-
imation to the correct inverse mapping. However this
function is only needed for more intuitive modelling.
For sculpturing applications, high precision is not nec-
essarily required and a mechanism to model the de-
formation, similar to specifying control points for a B-
spline curve, should suffice.

2. The trilinear mapping is approximated using four in-
terpolations in barycentric coordinates (Figure 6). Al-
though the resulting error is hardly noticeable in a
deformation model with a subdivision level of 2 or
more, for patches of low subdivision level, inconsisten-
cies might be visible when switching between orthogo-
nal stacks of object aligned slices. Increasing the sub-
division level will easily fix this problem. For the ac-
curacy of automatic registration techniques, however,
this should not be a problem, since only one slicing di-
rection is used. Note that our hardware approximation
still belongs to the class of trilinear functions, although
not exactly the one given in Equation 2.

SGI Octane V6 (MIPS R12000)

volume size level 1 level 2 level 3
1283 15.7 fps 11.3 fps 8.6 fps

SGI Onyx2 (MIPS R10000, BaseReality, 64MB TRAM)

volume size level 1 level 2 level 3
1283 25.7 fps 22.1 fps 18.3 fps
2563 20.7 fps 15.1 fps 11.3 fps

ATI Radeon 64MB DDR, (P III, 1GHz, Win2k)

volume size level 1 level 2 level 3
1283 18.2 fps 12.9 fps 7.6 fps

Table 1: Performance measurement

3. The gradient approximation described in Section 5 is
highly approximative and should not be used for any-
thing else than lighting calculations. The only purpose
of this approximation is to obtain visually pleasing im-
ages. For local illumination the approximation error is
tolerable, since the Phong model does not have a strict
theoretical background either.

A disadvantage of our approach is that it is not possible
to split up a large volume, that does not fit entirely into
texture memory (bricking). In the usual case bricking of 3D
texture would also significantly degrade performance, due
to the heavy bus load that results from swapping the whole
texture memory several times to display one frame. Up until
now this problem can only be circumvented by the increasing
size of texture memory of forthcoming graphics hardware.

The proposed deformation model has been designed with
particular regard to the efficient hardware implementation.
Throughout our experiments with the prototype implemen-
tation described in Section 4, we used an SGI Octance V6,
an SGI Onyx2 (Base Reality, 64MB TRAM) and a Pentium
III PC equipped with an ATI Radeon board with 64 MB
DDR RAM. Table 1 displays the performance results for the
standard algorithm without illumination and without using
vertex programs. The frame rates, denoted in frames per
second (fps), refer to different levels of uniform subdivision
of the whole volume. For simplicity, the bounding box of
the volume was kept static and only the inner vertices were
deformed by a random function. The subdivision resulted
in 1, 27 and 343 free vertices for the subdivision levels 1, 2
and 3, respectively.

To test the illumination method, described in Section 5,
a non-polygonal isosurface was rendered on the ATI Radeon
board, using the alpha test to determine the isosurface, sim-
ilar to the approaches described in [21, 18]. The dot prod-
uct was calculated during rasterization using the OpenGL
extension GL EXT texture env dot3. Images of an anima-
tion sequence are displayed in Figure 12. The sequence was
generated by animation of a CT scan of a carp1 and demon-
strates the realistic illumination calculation in an impressive
manner. Another example based on MRI data is displayed in
Figure 11. An approximate frame rate of 8 to 10 frames per
second was achieved for for this volume of size 2562 × 128
and a subdivision level of 2. Unfortunately, due to prob-
lems with the current OpenGL driver for the Radeon board,
larger volume data sets could not be loaded. However, we are
confident that this problem will be fixed with future driver

1The full animation sequence can be downloaded at
http://www9.informatik.uni-erlangen.de/Persons/Scheuering

22

releases.
Using the optimizations proposed in Section 4.1, we ex-

pect another performance enhancement by exploiting vertex
programs. The algorithm was tested on NVidia GeForce2
hardware, which currently supports 3D texture only as soft-
ware emulation, so the resulting frame rates are not rele-
vant. A fast hardware implementation will be realized using
forthcoming NVidia GeForce3 boards. For the optimization
using 3D dependent textures, as described in Section 4.2, no
suitable hardware does exist up until now, although promis-
ing approaches are very likely to be developed with future
graphics boards.

8 Conclusion

A novel approach for hardware deformation was presented,
which went significantly beyond previous approaches by ef-
ficiently exploiting rasterization hardware. This is achieved
by greatly reducing the computational cost for intersection
calculations. Further optimizations using new technologies,
such as vertex programs and pixel shaders are proposed. The
performance measurement clearly demonstrates the benefit
of this method. The future possibilities described in this
paper are meant as an inspiration for hardware developers,
which might lead to a breakthrough in real-time deformation
for medical applications, as well as visual arts and computer
games.

9 Acknowledgments

We are grateful to K. Hormann, P. Hastreiter and R. West-
ermann for constructive discussions and to A. Murray for
proof-reading. Above all we would like to thank U. Labsik
for providing the carp for the CT scan. As an aside, carps are
a typical Franconian delicacy, which are exclusively available
in the months, which contain an r (September – April).

References

[1] D. Bechmann. Space Deformation Models Survey. In
Computers & Graphics, pages 571–586, 1994.

[2] M. Brady, K. Jung, Nguyen HT, and T. Nguyen. Two-
Phase Perspective Ray Casting for Interactive Volume
Navigation. In Visualization ’97, 1997.

[3] B. Cabral, N. Cam, and J. Foran. Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware. ACM Symp. on Vol. Vis.,
1994.

[4] C. Chua and U. Neumann. Hardware-Accelerated
Free-Form Deformations. In Proc. SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, 2000.

[5] S. Coquillart. Extended Free-Form Deformations. In
Proc. SIGGRAPH, 1990.

[6] NVidia Corporation. NVidia Developer Relations Site.
http://www.nvidia.com/developer.

[7] J. Danskin and P. Hanrahan. Fast Algorithms for Vol-
ume Ray Tracing. In Worksh. of Vol. Vis. ACM, 1992.

[8] G. Eckel. OpenGL Volumizer Programmer’s Guide. SGI
Developer Bookshelf, 1998.

[9] S. Fang, S. Rajagopalan, S. Huang, and R. Raghavan.
Deformable Volume Rendering by 3D Texture Mapping
and Octree Encoding. In Proc. IEEE Visualization ’96,
1996.

[10] Yair Kurzion and Roni Yagel. Space deformation using
ray deflectors. In Rendering Techniques ’95 (Proceed-
ings of the Sixth Eurographics Workshop on Rendering),
pages 21–30, New York, 1995. Springer-Verlag.

[11] Yair Kurzion and Roni Yagel. Interactive space defor-
mation with hardware-assisted rendering. IEEE Com-
puter Graphics & Applications, 17(5), – 1997.

[12] P. Lacroute and M. Levoy. Fast Volume Rendering Us-
ing a Shear–Warp Factorization of the Viewing Trans-
form . Comp. Graphics, 28(4), 1994.

[13] R. MacCracken and K. Roy. Free-Form Deformations
with Lattices of Arbitrary Topology. In Proc. SIG-
GRAPH, 1996.

[14] M. Meißner, U. Hoffmann, and W. Straßer. Enabling
Classification and Shading for 3D Texture Based Vol-
ume Rendering Using OpenGL and Extensions. In Vi-
sualization ’99, 1999.

[15] M. Meißner, U. Kanus, and W. Straßer. VIZARD
II: A PCI-Card for Real-Time Volume Rendering. In
Proc. SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware, 1998.

[16] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and
L.Seiler. The VolumePro Real-time Ray-Casting Sys-
tem. In Proc. SIGGRAPH, 1999.

[17] B.T. Phong. Illumination for computer generated pic-
tures. In Communications of the ACM, pages 311–317,
1975.

[18] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and
T. Ertl. Interactive volume rendering on standard
PC graphics hardware using multi-textures and multi-
stage rasterization. In Proc. SIGGRAPH/Eurographics
Workshop on Graphics Hardware, 2000.

[19] T. Sederberg and S. Parry. Free-Form Deformation of
Solid Geometric Models. In Proc. SIGGRAPH, 1986.

[20] A. Singh, D. Goldgof, and D. Terzopoulos. Deformable
Models in Medical Image Analysis. IEEE Computer
Society, 1998.

[21] R. Westermann and T. Ertl. Efficiently Using Graphics
Hardware in Volume Rendering Applications. In Proc.
of SIGGRAPH, Comp. Graph. Conf. Series, 1998.

[22] R. Westermann and C. Rezk-Salama. Real-time volume
deformation. In Computer Graphics Forum (Eurograph-
ics 2001) accepted for publication, 2001.

23

Figure 9: Direct volume rendering of a pre-segmented and extremely deformed brain (MRI scan).

Figure 10: Soft tissue modelling of a semi-transparent liver data set (CT scan).

Figure 11: Deformation of shaded non-polygonal isosurface of a human head (MRI scan).

Figure 12: Animation sequence of swimming carp (CT scan) with a maximum subdivision level of 2.

24

